Pandas - Data Analysis and Manipulation
Master DataFrames and data analysis with Pandas

📚 Resources for This Lesson
DataFrames
The core data structure in Pandas.
import pandas as pd
# Creating a DataFrame
data = {
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 28],
'City': ['NYC', 'LA', 'Chicago']
}
df = pd.DataFrame(data)
# From CSV
df = pd.read_csv('data.csv')
# Basic info
print(df.head()) # First 5 rows
print(df.info()) # Data types and missing values
print(df.describe()) # Statistical summary
Accessing Data
# Column access
ages = df['Age']
names = df[['Name', 'City']]
# Row access
row = df.iloc[0] # By position
row = df.loc[0] # By label
# Filtering
young_people = df[df['Age'] < 30]
Data Manipulation
# Adding columns
df['Salary'] = [50000, 60000, 55000]
# Renaming
df.rename(columns={'Name': 'FullName'})
# Handling missing values
df.fillna(0)
df.dropna()
# Sorting
df.sort_values('Age')
Grouping and Aggregation
# Group by
grouped = df.groupby('City')['Age'].mean()
# Multiple operations
summary = df.groupby('City').agg({
'Age': 'mean',
'Salary': 'sum'
})
Common Methods
merge()- Combine DataFramesconcat()- Stack DataFramespivot_table()- Reshape dataapply()- Apply functions
Exporting Data
# Save to CSV
df.to_csv('output.csv', index=False)
# Save to Excel
df.to_excel('output.xlsx')
# Save to JSON
df.to_json('output.json')